Desventajas de un coche eléctrico

En este artículo te vamos a explicar siete desventajas de los coches eléctricos. De esta forma podrás tomar una mejor decisión de compra, en el caso de que estés pensando comprar un vehículo eléctrico. 


Desventajas de los coches eléctricos:


Autonomía limitada:

Una de las principales desventajas de los coches eléctricos es su autonomía limitada. Lo que quiere decir que no puedes recorrer largas distancias, sin antes volver a recargar su batería. 

Los coches eléctricos generalmente tienen una autonomía promedio entre 200 y 300 kilómetros con una carga completa; aunque, también existen modelos que pueden superar los 400 kilómetros de autonomía. 

La autonomía limitada es una gran desventaja para aquellos conductores que recorren largas distancias con su vehículo, ya que esto genera una “ansiedad por la autonomía”, término que se adoptó por el pensamiento a buscar un punto de carga próximo. 

Aún falta que los fabricantes realicen más avances tecnológicos en cuanto a la autonomía de los coches eléctricos, puesto que los vehículos de combustión interna tienen unos niveles de autonomía mayores a los eléctricos.


Infraestructura de carga insuficiente:

Otra gran desventaja de los coches eléctricos es la infraestructura de carga. Aunque este problema no es directamente proporcional a los coches eléctricos, si les influye en gran parte. Es un problema de los países, por ejemplo en Países Bajos tienen más de 9.500 puntos de carga, mientras que en Francia tienen 8.500. En España actualmente hay unos 4.500 puntos.  (muchos de ellos no se pueden usar)

Esta falta de infraestructura de carga limita la capacidad de los conductores de poder recargar sus vehículos en diferentes lugares, como estacionamientos, centros comerciales o áreas residenciales. Pero, tampoco hay una gran red en los desplazamientos largos, es decir, en carreteras. 


Tiempo de carga:

El tiempo de carga de un automóvil eléctrico depende de varios factores, como el tipo de cargador, la capacidad de la batería y el nivel de carga actual. Por lo general, los vehículos se pueden llegar a demorar bastante más de una hora en completar un 80% de su batería, con un cargador normal.

Con un cargador rápido, se puede reducir el tiempo a unos 30-45 minutos; sin embargo, es mucho más tiempo que repostar combustible. Es por eso que es una gran desventaja de los coches eléctricos, porque en su gran mayoría de veces deben tener más tiempo para poder recargar su vehículo.

Y este tipo de carga rápida, perjudica a la batería, menguando la duración y rendimiento.


Costo inicial:

Actualmente, el costo inicial de un coche eléctrico es una gran desventaja. Porque el precio de la batería es el que incluye en gran cantidad a su precio final. Sin embargo, muchos conductores lo ven como una inversión, porque estarán reduciendo costos de mantenimiento y repuestos.  Lo cual tampoco es cierto, ya hay estudios que el coche eléctrico, sale más caro mantenerlo.


Variedad de modelos:

Otra gran desventaja de los coches eléctricos, frente a los vehículos de combustión interna, es la variedad de modelos. Aunque actualmente existen muchos coches eléctricos, todavía es mucho más reducida que los vehículos de gasolina o diésel. 

La falta de variedad de modelos eléctricos supone una gran barrera para aquellos conductores que buscan personalizar su vehículo con otro tamaño, acabados, rendimiento o características. 


Una de las principales razones detrás de la falta de variedad de modelos es el desafío técnico y logístico que supone fabricar y comercializar un coche eléctrico. Porque la fabricación de este tipo de coches supone de una infraestructura y cadena de suministro especializada, además de una gran inversión en investigación y desarrollo. 


Dependencia de la red eléctrica:

Como mencionamos al principio, algunos coches requieren de cierto tipo de cargadores para poder recargar sus baterías. No son como los coches de combustión interna, que se pueden abastecer en cualquier estación de servicio. 

Algunos de sus desafíos de la red eléctrica, son los puntos de carga limitados y el flujo de energía eléctrica. Es decir, la cantidad de demanda eléctrica que puede suministrar el cargador. Puesto que, al estar recargando varios vehículos eléctricos, se puede sobrecargar la red eléctrica local y causar problemas de suministro. 


Impacto ambiental de las baterías:

Aunque se encuentra en el último lugar de la lista, es una de las principales desventajas que sufren los coches eléctricos. La producción y fabricación de las baterías para los coches eléctricos requieren de materias primas y procesos de fabricación que tienen un impacto negativo en el medio ambiente. 

Las baterías están compuestas por materiales como el litio, cobalto, níquel y manganeso. La extracción de estos materiales a menudo generan contaminación y degradación del entorno natural. Por ejemplo, el litio requiere de gran cantidad de agua para su extracción. 

Además, la fabricación de las baterías implican un consumo de energía y recursos naturales que contribuyen a la huella ambiental global. 

Esperamos que estás desventajas de los coches eléctricos las tengas en cuenta a la hora de comprar un coche.


Más información sobre el impacto ambiental de las baterías, aquí



Por Aljocar 21 de febrero de 2025
🔴 ¿Cómo afecta un catalizador tapado al motor? Cuando los conductos del catalizador están obstruidos, se convierte en un tapón que restringe el flujo de gases de escape. Esto genera varios efectos negativos: 1️⃣ Aumento de la presión en el sistema de escape El motor necesita expulsar los gases de escape rápidamente para permitir la entrada de aire fresco en la admisión. Si el catalizador está tapado, los gases quedan atrapados, aumentando la presión de retorno en el sistema de escape. 📌 Consecuencia: La acumulación de gases en los cilindros reduce la eficiencia volumétrica, lo que significa que el motor no puede "respirar" correctamente. Se produce un efecto de recirculación donde parte de los gases de escape regresan a la cámara de combustión, contaminando la mezcla nueva y reduciendo la potencia. 2️⃣ Pérdida de potencia y aceleración deficiente Cuando la presión de escape es demasiado alta, el motor tiene dificultad para expulsar los gases quemados. Esto afecta el ciclo de combustión porque los cilindros no pueden llenarse completamente de aire fresco. 📌 Consecuencia: El motor se siente ahogado y responde con ralentí inestable y falta de potencia. Se nota una aceleración muy lenta o nula, especialmente cuando se exige al motor en pendientes o al pisar el acelerador a fondo. Si el catalizador está completamente obstruido, el motor puede apagarse al acelerar, ya que no puede deshacerse de los gases de escape. 3️⃣ Aumento de la temperatura en el motor y en el escape Cuando el escape está bloqueado, los gases de combustión quedan atrapados dentro del sistema y generan calor acumulado en el motor. 📌 Consecuencia: El múltiple de escape y los tubos pueden ponerse al rojo vivo debido a la acumulación de calor. La temperatura del motor aumenta, lo que puede afectar la junta de la cabeza, los sellos de válvulas y el sistema de refrigeración. Para dudas y aclaraciones, consulta con nuestros expertos: 987347859
Por Aljocar 19 de febrero de 2025
La bobina de encendido es un transformador que eleva el voltaje de la batería (generalmente 12 voltios) a un nivel lo suficientemente alto (miles de voltios) para crear una chispa eléctrica en la bujía. Esta chispa enciende la mezcla aire/combustible en la cámara de combustión del motor, iniciando el proceso de combustión. Componentes de la bobina de encendido: Bobinado Primario: Un devanado de pocas vueltas de cable grueso. Bobinado Secundario: Un devanado de muchas vueltas de cable delgado. Núcleo de Hierro: Un núcleo de hierro dulce laminado que concentra el campo magnético. Terminales Primarios: Conexiones para el circuito primario (baja tensión). Terminal Secundario (Torre): Conexión para el cable de la bujía (alta tensión). Funcionamiento de la bobina de encendido: Circuito Primario: La corriente de la batería fluye a través del bobinado primario, creando un campo magnético alrededor del núcleo de hierro. Interrupción de la Corriente: Un interruptor mecánico (platinos en sistemas antiguos) o electrónico interrumpe la corriente en el bobinado primario. Colapso del Campo Magnético: El campo magnético colapsa rápidamente, induciendo un alto voltaje en el bobinado secundario. Chispa en la Bujía: El alto voltaje se transmite a la bujía, generando una chispa que enciende la mezcla aire/combustible. Tipos de bobinas de encendido: Bobina de Encendido Convencional: Utilizada en sistemas de encendido con distribuidor. La bobina genera un pulso de alto voltaje que se distribuye a las bujías a través del distribuidor. Bobina de Encendido Individual (COP): Una bobina separada para cada bujía. Este sistema elimina el distribuidor y proporciona un encendido más preciso y eficiente. Bobina de Encendido Doble (DIS): Dos bujías comparten una bobina. Este sistema también elimina el distribuidor. ¿Qué es la bobina de encendido? La bobina de encendido es un componente crucial del sistema de encendido del motor que transforma el bajo voltaje de la batería en el alto voltaje necesario para generar la chispa en las bujías, iniciando la combustión. Mantenimiento de la bobina de encendido: Revisión visual: Verificar si hay grietas, óxido o conexiones sueltas. Prueba de resistencia: Medir la resistencia de los bobinados primario y secundario. Reemplazo: Reemplazar la bobina si está defectuosa. En resumen, la bobina de encendido es un componente esencial para el funcionamiento del motor, ya que proporciona la energía necesaria para encender la mezcla aire/combustible y generar la potencia. Fuente: Mecánica Automotriz
Por Alberto Gil Gago 13 de febrero de 2025
La función principal de un sistema de refrigeración es gestionar la temperatura del motor de tu coche, que tiende a aumentar debido a la combustión interna. El refrigerante en este sistema fluye a través del paso en un motor, absorbiendo el calor de la combustión. Después de viajar a través de múltiples canales, este refrigerante regresa al radiador. Aquí es donde pierde calor y regresa a una temperatura más fría con la ayuda de una corriente de aire. Los motores de combustión interna de los últimos tiempos utilizan tanto aire como agua o cualquiera de estos componentes como refrigerantes para reducir los niveles de calefacción en el motor de tu coche. También hay motores de uso especial que incorporan aire de la atmósfera para enfriar el motor. Estos sistemas de refrigeración son pequeños, menos complejos y ligeros Aunque el agua funciona mejor que el aire al acelerar este proceso de enfriamiento, añade más complejidad, costo y peso a un motor. Estos sistemas particulares funcionan mejor para los vehículos con un motor de mayor potencia, que genera más calor y puede manejar más peso 📌¿Cómo funciona el sistema de enfriamiento en el automóvil? 📌 El único trabajo de un sistema de refrigeración es mover el refrigerante a través de todos los canales presentes en un bloque de motor. La bomba de agua empuja el refrigerante a través del bloque del cilindro. Mientras viaja a través de los canales, este refrigerante absorbe cualquier calor que produce el motor de tu coche. Después de que el refrigerante sale del motor, se dirige hacia el radiador, donde se enfría con la ayuda del flujo de aire en la parrilla del radiador del coche. Si, durante cualquier caso, la temperatura del líquido va por debajo de una cierta cantidad, el radiador se salta y se dirige hacia el bloque del motor. Hasta que llegue a cierta temperatura, este refrigerante seguirá circulando. Entonces, una válvula en el termostato se abrirá, abriendo paso para que el líquido pase a través del radiador y comience el proceso de enfriamiento.
Por Aljocar 12 de febrero de 2025
El osciloscopio automotriz es una herramienta esencial para diagnosticar sensores en un vehículo. Cada sensor genera una señal característica que permite identificar su correcto funcionamiento o posibles fallas. 1️⃣ Sensor CMP (Sensor de Posición del Árbol de Levas) 🔹 Tipo de señal: Señal digital cuadrada (HALL) o señal de onda senoidal (inductivo). 🔹 Frecuencia: Varía según las RPM del motor. 🔹 Forma de onda esperada: Pulsos uniformes que indican la posición del árbol de levas. 🔹 Fallos comunes: Señal intermitente, voltajes erráticos o ausencia de señal pueden indicar un sensor dañado o un cableado defectuoso. 📌 Importancia: Se usa para sincronizar la inyección de combustible y el encendido. 2️⃣ Sensor CKP (Sensor de Posición del Cigüeñal) 🔹 Tipo de señal: Puede ser de tipo inductivo (senoidal) o efecto Hall (cuadrada). 🔹 Frecuencia: Aumenta con la velocidad del motor. 🔹 Forma de onda esperada: Patrón repetitivo con picos regulares; en motores con rueda reluctora, se observa un diente faltante que marca la referencia de sincronización. 🔹 Fallos comunes: Señal ausente, distorsionada o fluctuante puede causar fallos de encendido o imposibilidad de arrancar. 📌 Importancia: Es clave para la sincronización del motor y la inyección de combustible. 3️⃣ Sensor MAF (Sensor de Flujo de Masa de Aire) 🔹 Tipo de señal: Depende del tipo de sensor: - Tipo de voltaje analógico: 0.5V - 5V según la cantidad de aire. - Tipo frecuencia: Señal pulsante cuya frecuencia aumenta con el flujo de aire. 🔹 Forma de onda esperada: En ralentí, la señal es estable; al acelerar, la amplitud o frecuencia aumenta. 🔹 Fallos comunes: Señal plana o sin respuesta indica un sensor dañado o sucio. 📌 Importancia: Mide el aire que entra al motor y ayuda a calcular la mezcla de combustible. 4️⃣ Sensor de Detonación (Knock Sensor) 🔹 Tipo de señal: Señal de onda variable en milivoltios (mV). 🔹 Forma de onda esperada: En ralentí, la señal es estable con pequeñas variaciones; cuando hay detonaciones, aparecen picos de voltaje irregulares. 🔹 Fallos comunes: Si la señal es completamente plana, el sensor podría estar dañado. Si hay demasiados picos, puede haber preignición o mezcla pobre. 📌 Importancia: Detecta detonaciones y permite que la ECU ajuste el avance del encendido para evitar daños en el motor.
Por Aljocar 12 de febrero de 2025
A continuación se muestra una lista completa de las partes esenciales: ✅ *Árbol de levas*: Controla la sincronización de las válvulas ✅ *Válvula de admisión*: Permite que la mezcla aire-combustible ingrese a la cámara de combustión. ✅ *Válvula de escape*: Libera los gases de escape después de la combustión. ✅*Cabeza de cilindro*: Cubre los cilindros y aloja las válvulas. ✅ *Cámara de combustión*: donde el combustible y el aire se mezclan, se encienden y producen energía. ✅*Pistón*: Convierte la presión de combustión en potencia mecánica ✅*Refrigerante*: Absorbe el calor para evitar el sobrecalentamiento. ✅*Biela*: Une el pistón al cigüeñal, transfiriendo el movimiento. ✅*Cigüeñal*: Convierte el movimiento lineal del pistón en movimiento rotatorio. ✅*Cárter*: Alberga el cigüeñal y a menudo contiene aceite. ✅*Cárter de aceite*: contiene el aceite del motor para lubricación. .✅*Aceite*: Reduce la fricción entre los componentes móviles. Además, otras partes cruciales incluyen: ✅*Bujía*: Enciende la mezcla aire-combustible en la cámara de combustión. ✅ *Inyector de combustible*: suministra combustible a la cámara de combustión. ✅*Correa/cadena de distribución*: sincroniza el movimiento de la válvula y el pistón ✅*Bloque del motor*: Alberga cilindros, pistones y cigüeñal. Comprender estos componentes y sus funciones es esencial para el mantenimiento y reparación de los motores de combustión interna.
Por Aljocar 12 de febrero de 2025
Diagrama de Circuito de Carga con Alternador para Batería de Automóvil ⚡🔋🚗 Este esquema representa un circuito de carga simplificado en un vehículo con alternador y regulador de voltaje, mostrando cómo se mantiene la batería cargada mientras el motor está en marcha. 📌 Componentes Principales 🔄 Alternador: Convierte la energía mecánica del motor en energía eléctrica, suministrando corriente al sistema y recargando la batería. ⚡ 14.4V: Voltaje de salida objetivo del alternador para cargar correctamente la batería. 🔌 Terminal de Salida (+): Conexión del alternador que envía energía al sistema eléctrico del vehículo. ⚙ Conexión de Campo: Se enlaza con el regulador de voltaje para controlar la producción de energía del alternador. 🖧 Conexión del Regulador: Transfiere información sobre el voltaje del sistema al regulador. 🔩 Tierra (Chasis del Vehículo): Ruta de retorno de la corriente eléctrica. 🛠 Regulador de Voltaje: Mantiene el voltaje del sistema en un nivel seguro (alrededor de 14.4V) ajustando la corriente que fluye al devanado de campo del alternador. ⚡ Resistencia: Limita la corriente que entra en el campo del alternador, protegiendo el sistema. 🔘 Interruptor de Encendido: Controla el flujo de energía hacia el regulador y el sistema eléctrico. 🔋 Batería (12V): Almacena energía para arrancar el motor y alimentar el sistema eléctrico. 🔴 Terminal Positivo (+): Conectado a la salida del alternador para recibir carga. ⚫ Terminal Negativo (-): Conectado a tierra (chasis del vehículo). 📌 Funcionamiento del Circuito 1️⃣ Arranque del Motor: ✔ Cuando el interruptor de encendido se activa, la batería suministra energía al sistema eléctrico y al motor de arranque. 2️⃣ Generación de Energía: ✔ Al encender el motor, el alternador empieza a girar y generar electricidad. 3️⃣ Regulación del Voltaje: ✔ El regulador de voltaje monitorea el voltaje del sistema. ✔ Si el voltaje es bajo (batería descargada), aumenta la corriente de campo para que el alternador genere más energía. ✔ Si el voltaje es alto, el regulador reduce la corriente de campo, limitando la salida del alternador. 4️⃣ Carga de la Batería: ✔ El alternador suministra aproximadamente 14.4V, asegurando una carga eficiente de la batería. 5️⃣ Mantenimiento del Voltaje del Sistema: ✔ El regulador de voltaje ajusta continuamente la salida del alternador, evitando sobrecargas o caídas de voltaje. ⚙ Conceptos Clave ✅ Regulación del Voltaje: Protege la batería y componentes eléctricos de sobrecarga. ✅ Circuito de Carga: La ruta que permite la transferencia de energía desde el alternador a la batería. ✅ Conexión a Tierra: Permite el retorno de la corriente, asegurando un circuito estable. 📜 Notas Importantes ⚠ Es un diagrama simplificado. Los sistemas de carga modernos pueden incluir sensores y módulos electrónicos adicionales. ⚠ El voltaje de carga puede variar según el modelo del vehículo y condiciones de operación. ⚠ Siempre desconecta la batería antes de trabajar en el sistema eléctrico del vehículo. Este circuito es esencial para garantizar que la batería se mantenga cargada y el sistema eléctrico funcione correctamente. 🚗🔋⚡ Fuente: Mecánica Automotriz
Por Aljocar 7 de febrero de 2025
Si tu batería se descarga sin motivo aparente, puede haber una fuga de corriente en el sistema eléctrico. ¡Sigue estos pasos para encontrar el problema! Paso 1: Preparación del Vehículo Apaga el motor y saca las llaves del encendido. Cierra todas las puertas para evitar luces encendidas. Desconecta cargadores, GPS u otros dispositivos. Paso 2: Configurar el Multímetro Pon el multímetro en corriente continua (DC) y selecciona la escala de amperios (A). Si tiene varias escalas, usa la más alta primero. Paso 3: Desconectar el Cable Negativo de la Batería Usa una llave para desconectar el cable negativo (–) de la batería (generalmente negro). Asegúrate de que no toque ninguna parte del auto mientras trabajas. Paso 4: Conectar el Multímetro Punta NEGRA del multímetro al borne NEGATIVO de la batería. Punta ROJA del multímetro al cable NEGATIVO que desconectaste. Esto pondrá el multímetro en serie con el sistema y medirá la corriente de fuga. Paso 5: Leer el Multímetro Lectura normal: Debajo de 50 miliamperios (0.05 A). Lectura alta: Si es mayor, hay una fuga de corriente que debe ser investigada.
Por Aljocar 7 de febrero de 2025
¿Qué pasa si falla el inyector de AdBlue? Un inyector en mal estado puede impedir que el sistema SCR funcione correctamente, aumentando las emisiones y reduciendo la eficiencia del motor. Se trata de un sistema anti contaminación que llevan instalados los coches modernos pero que por desgracia puede provocar fallos en el motor de nuestro vehículo. Muchos de estas averías vienen provocadas por su recarga o mantenimiento. "Una de los fallos más comunes de los inyectores de AdBlue se produce debido a obstrucciones causadas por la urea cristalizada . Con el tiempo, el AdBlue puede cristalizarse y obstruir el inyector y la carcasa, lo que impide que el líquido AdBlue ingrese al escape. En ALJOCAR disponemos de AD BLUE de calidad y el aditivo que evita su cristalización , con el AD BLUE de calidad y el anticristalizante evitaremos averías muy costosas.
Por Aljocar 24 de enero de 2025
Circular con la válvula EGR averiada es posible, pero no recomendable debido a riesgos como dañar el motor, aumentar emisiones y fallar en la ITV. Repararla evita problemas mayores. La válvula EGR, o válvula de recirculación de gases de escape, es un componente esencial en muchos vehículos, especialmente en motores diésel. Este elemento desempeña un papel crucial en la reducción de emisiones contaminantes y en el correcto funcionamiento del motor. Sin embargo, como cualquier pieza mecánica, puede averiarse. Ante esta situación, surge una duda común: ¿se puede circular con la válvula EGR averiada? ¿Qué es la válvula EGR y cómo funciona? La válvula EGR (Exhaust Gas Recirculation) tiene como función recircular una parte de los gases de escape hacia la admisión del motor. Este proceso reduce las emisiones de óxidos de nitrógeno (NOx) al disminuir la temperatura en la cámara de combustión. El funcionamiento de la válvula está controlado electrónicamente. Dependiendo de factores como la temperatura del motor, el régimen de revoluciones y la carga del acelerador, la válvula se abre o se cierra para regular el paso de los gases. Este mecanismo no solo contribuye a la protección del medio ambiente, sino también ayuda a mejorar la eficiencia del motor. ¿Qué ocurre si la válvula EGR se avería? Cuando la válvula EGR falla, los síntomas pueden variar desde leves hasta severos, dependiendo del tipo de avería. Algunos de los problemas más comunes incluyen: Pérdida de potencia: La acumulación de carbonilla puede obstruir la válvula, lo que dificulta su funcionamiento y afecta el rendimiento del motor. Encendido del testigo de avería: El testigo “Check Engine” suele iluminarse en el cuadro de mandos cuando la válvula EGR no funciona correctamente. Comportamiento irregular: Tirones, dificultad para arrancar en frío y mayor cantidad de humo negro en el escape son indicativos de una avería. Mayor consumo de combustible: Un mal funcionamiento puede provocar una combustión ineficiente, aumentando el gasto de combustible. ¿Es seguro circular con la válvula EGR averiada? La respuesta corta es que sí se puede circular con la válvula EGR averiada, pero no es recomendable. Aunque el vehículo seguirá funcionando, hacerlo podría generar una serie de problemas a corto y largo plazo, como: Daños adicionales al motor: Una válvula EGR bloqueada o disfuncional puede provocar un aumento de la temperatura en la cámara de combustión, lo que podría dañar otros componentes del motor. Incremento de las emisiones contaminantes: La válvula EGR es crucial para reducir la emisión de gases nocivos. Conducir con ella averiada aumenta la contaminación y podría resultar en problemas al pasar la ITV. Multas: Aunque no siempre es ilegal, las autoridades pueden considerar una infracción si el vehículo emite niveles de contaminación excesivos.
Por Aljocar 23 de enero de 2025
El Mercedes 600 «Grosser» fue una berlina de representación – y de verdadero superlujo – construida por Mercedes entre 1963 y 1981. Sólo 2.677 ejemplares fueron construidos a mano, con un nivel de calidad que deja en ridículo a cualquier vehículo actual. La historia de los 600 es poco conocida, pero menos conocidas son las razones por las que el Mercedes 600 es el mejor Mercedes jamás construido y merece un puesto de honor en los anales de la historia del automóvil. 1) Todo es hidráulico en el Mercedes 600 Las ventanillas tienen un funcionamiento variable, se pueden cerrar mas rápidamente cuanto mas fuerte presiones el botón. Los sistemas hidráulicos emplean un fluido presurizado – similar al aceite – para operar elementos mecánicos con gran potencia, ademas de muy suavemente. Parece cuestión de lógica que en el mejor Mercedes de todos los tiempos empleara un sistema hidráulico presurizado a 220 bares para todos sus elementos de accionamiento. Y cuando digo todos, lo digo en serio. Su suspensión neumática esta alimentada por el sistema hidráulico, sin ir mas lejos.
Más entradas....
Share by: